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SUMMARY

Many planetary and astrophysical bodies are rotating rapidly, fluidic and, as a consequence of rapid
rotation, in the shape of an ablate spheroid. We present an efficient element-by-element (EBE) finite
element method for the numerical simulation of nonlinear flows in rotating incompressible fluids that
are confined in an ablate spheroidal cavity with arbitrary eccentricity. Our focus is placed on temporal
and spatial tetrahedral discretization of the EBE finite element method in spheroidal geometry, the EBE
parallelization scheme and the validation of the nonlinear spheroidal code via both the constructed exact
nonlinear solution and the special resonant forcing in the inviscid limit. Copyright q 2009 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

There are many geophysical and astrophysical systems that share the three common characters: they
are fluidic, rotating rapidly and in spheroidal shape. Planet Earth spins fast and its interior consists
of molten iron that is confined in a spheroidal cavity defined by the core-mantle boundary [1].
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It was conjectured that the spheroidal shape of the Earth’s fluid interior, together with the lunar–
solar precession, may be responsible for generating and maintaining the geomagnetic field [2]. This
conjecture has been supported not only by laboratory experiments demonstrating that wave-like
instabilities and the transition to complex turbulent flows can occur in rotating spheroids [3–5]
but also by numerical experiments showing that procession-driven flows can generate and sustain
magnetic fields [6–8]. Many early-type stars, because of their rapid rotation, are also in the shape
of a Roche spheroid in which the effect of rapid rotation induces both the geometric flattening
and latitudinal variation of the temperature [9]. Furthermore, the shape of galaxy may be treated
as a highly flatted spheroid with a large eccentricity [10]. It follows that, in addition to intrinsic
mathematic interest in the spheroidal problem [11, 12], an efficient numerical method for the
problem of fluid dynamics in rotating ablate spheroidal cavities has many important applications
in geophysics and astrophysics.

The problem of fluid dynamics in spheroidal geometry is, however, mathematically and compu-
tationally less tractable than that for spherical geometry. Spectral methods based on spherical
harmonic expansions have been widely and conveniently employed in the numerical studies of
convection and dynamos in rotating spherical systems (e.g. [6, 13–15]). In the framework of spher-
ical spectral approximations, the flow velocity u for a Boussinesq or an anelastic fluid may be
expressed as a sum of poloidal (v) and toroidal (w) vectors:

�0(r)u(r, t)=∇×∇×[rv(r, t)]+∇×[rw(r, t)] (1)

where r is the position vector, �0 is the density distribution depending only on r or being constant,
and the modified solenoidal condition ∇ ·(�0u)=0 is automatically satisfied at the expense of
raising the order of governing partial differential equations. The poloidal (v) and toroidal (w)

functions are then further expanded in the form

v(r, t)=∑
m,l

[v̂lm(t)vlm(r)Ym
l (�,�)+c.c.] (2)

w(r, t)=∑
m,l

[ŵlm(t)wlm(r)Ym
l (�,�)+c.c.] (3)

where c.c. denotes the complex conjugate of the preceding term, vlm(r) and wlm(r) are a function
of r satisfying the required boundary condition on the bounding surface of a spherical cavity, and
Ym
l (�,�) is the spherical harmonics of degree l. For the spherical problem, the boundary geometry

of the container is automatically consistent with the nature of spherical polar coordinates, and,
consequently, the spectral mathematical formulation/implementation is straightforward. Spheroidal
boundary geometry, however, cannot be accommodated by spherical polar coordinates and, as a
result, either a coordinate transformation that maps the spheroidal domain into the spherical domain
[16] or complicated oblate spheroidal coordinates [17] must be used in the spectral approximation
for nonlinear flows confined in the spheroidal cavities. A major numerical disadvantage of the
spheroidal spectral method, in addition to the fact that the Legendre transform is computationally
inefficient and severely limits the effectiveness of the method on modern parallel computers, is that
the coordinate transformation or oblate polar spheroidal coordinates must lead to more complicated
governing equations that make numerical implementation more difficult. Moreover, there apparently
exist numerical instabilities in the spheroidal spectral approximation using spherical harmonics
when the eccentricity of a rotating spheroid � is high, ��0.6 [17]. It is hence desirable to find an
alternative numerical method, which is non-spectral and can be readily implemented on modern
parallel computers, for efficiently solving the problem of fluid dynamics in rotating spheroids.
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In this study, we present an element-by-element (EBE) finite element method that can be
effectively used for the numerical simulation of nonlinear flows confined in a rotating spheroidal
cavity with arbitrary eccentricity. The EBE finite element method was first successfully employed
in simulating convection and dynamos in spherical geometry [18–20], showing that the EBE
scheme can take the full advantage of modern massively parallel computers achieving nearly linear
scalability. This study extends the previous spherical work to general spheroidal geometry by
focusing on three different aspects of the finite element approximation for a rotating incompressible
fluid confined in the spheroidal cavities. First, we shall describe temporal discretization and spatial
tetrahedral discretization of the EBE finite element method suitable for general spheroidal geometry.
Second, we shall discuss an EBE parallelization scheme suitable for modern massively parallel
computers. Finally, we shall validate our nonlinear spheroidal code via two different ways: (i) by
constructing an exact nonlinear solution of the spheroidal system we investigate the accuracy and
convergence of the spheroidal code and (ii) by constructing a special resonant forcing we check
the numerical solution of the spheroidal code for a small Ekman number against the theoretical
prediction in the inviscid limit.

In what follows we shall begin by presenting the mathematical formulation of the numerical
problems in Section 2. The EBE finite element method is discussed in Section 3. Numerical results
are presented in Section 4 and the paper closes in Section 5 with a brief summary and concluding
remarks.

2. MATHEMATICAL FORMULATION OF THE NUMERICAL PROBLEM

Consider an impressible fluid of kinematic viscosity � contained in an oblate spheroidal cavity
whose bounding surface is defined by(

x∗

a

)2

+
(
y∗

b

)2

+
(
z∗

c

)2

=1 (4)

where a=b and c<a represents an oblate spheroid and the z∗-axis is parallel to the axis of rotation.
An important parameter describing the geometry of an oblate spheroid is its eccentricity defined as

�=
√
a2−c2

a2
, 0<�<1 (5)

The limit �→0 corresponds to the special case for a sphere, while the limit �→1 corresponds
to a flatted spheroidal disk. The problem of fluid dynamics in a rotating oblate spheroidal cavity,
driven by an external force f∗(x∗, t∗) which may, for example, arise from the effect of precession
or nutation or libration, is governed by the equations

�u∗

�t∗
+u∗ ·∇u∗+2X×u∗ =−1

�
∇ p∗+�∇2u∗+f∗(x∗, t∗) (6)

∇·u∗ =0 (7)

where X represents the angular velocity of the spheroidal container, p∗ is the total pressure, u∗ is
the three-dimensional velocity field and f∗ denotes external forces such as the Poincaré force.
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Figure 1. Geometry of a rotating ablate spheroid with eccentricity � and the z-axis being
parallel to the axis of rotation.

Employing a as the length scale, �−1 as the unit of time and �a2�2 as the unit of pressure,
while the bounding surface of the spheroidal container is described by the dimensionless equation

x2+ y2+ z2

1−�2
=1 (8)

the sketch of which is depicted in Figure 1, the numerical problem is governed by the dimensionless
equations

�u
�t

+u·∇u+2ẑ×u=−∇ p+E∇2u+f(x, t) (9)

∇ ·u=0 (10)

where ẑ is a unit vector parallel to the axis of rotation. For a given non-dimensional forcing f, the
mathematical problem is characterized by the geometrical eccentricity � of a spheroid and by the
non-dimensional parameter, the Ekman number E , defined as

E= �

�a2

measuring the relative importance of viscous to Coriolis forces. Since planets and stars in the
shape of spheroid rotate rapidly, we shall focus our numerical studies on small Ekman number
E�1.
In the present study, the nonlinear problem governed by (9) and (10) in rotating spheroidal

cavities subject to a given forcing f will be solved numerically using an EBE finite element method
that is particularly suitable for modern massively parallel computers. In our numerical analysis,
we shall adopt the general boundary condition,

u|� =w(�, t) (11)

where the boundary value w(�, t) is assumed to be continuous on the bounding surface � of a
spheroidal cavity. In order to handle an exact solution ue with non-zero divergence, in connection
with a possible extension to compressible fluids, we shall present our EBE finite element scheme
in Section 3 for a generalized form of equation (10):

∇ ·u=g(x, t) (12)

It should be pointed out that the primary objective of this study is not to understand any particular
physical phenomenon taking place in rotating spheroidal fluid systems, but to design and validate
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an effective numerical method that can be employed for the geophysical and astrophysical fluid
problem requiring spheroidal geometry. As noted by Lorenzani and Tilgner [16], there exist few
analytical or numerical nonlinear solutions for comprehensively validating a nonlinear spheroidal
code in rotating systems. We have chosen two different ways of validating our nonlinear spheroidal
code. First, we construct an exact nonlinear solution, ue(x, t), of the system and, then, compare
ue(x, t) with the corresponding numerical solution computed from the spheroidal code. This
comparison not only validates the numerical code but also reveals the important information about
the accuracy and convergence of our finite element approximation. Second, we shall derive an
analytical solution, ua(x, t), in a rapidly rotating fluid spheroid with arbitrary eccentricity in the
limits �→0 and f→0 for the small-amplitude flow. By choosing a special forcing f(x, t) that
corresponds to the solution ua(x, t) in the double limits, we can further check our nonlinear
spheroidal code by examining the theoretically predicted resonance at E�1.

3. AN EBE FINITE ELEMENT METHOD

3.1. Temporal discretization

Let tmax be a fixed final time of a numerical simulation for the problem of fluid dynamics in a
rotating spheroid. We divide the time interval [0, tmax] into M equally spaced subintervals using
the following nodal points:

0= t0<t1<t2< · · ·<tM = tmax

where tn =n�t for n=0,1, . . . ,M and �t= tmax/M . If y(r, t) is a function continuous with respect
to t , we shall often write yn(r)= y(r, tn) for n=0,1, . . . ,M . A semi-implicit time stepping scheme
[21, 22] is employed for the time advancement of numerical integration. First an implicit second-
order backward differentiation formula (BDF-2) is used for the time derivative, i.e.

(
�y
�t

)n+1

= 3yn+1−4yn+ yn−1

2�t
+O(�t2) (13)

A second-order extrapolation is applied to the nonlinear term u·∇u. More precisely, the term
u·∇u at t= tn+1 is expressed as

un+1 ·∇un+1=2(un ·∇un)−(un−1 ·∇un−1)+O(�t2) (14)

Moreover, we introduce the notation

un+1 ·∇un+1≡2(un ·∇un)−(un−1 ·∇un−1) (15)

to simplify the lengthy mathematical expression. A semi-implicit discretization of the governing
equations (9) and (10)/(12) in time is: for n�1, find un+1 and pn+1 such that

3un+1−4un+un−1

2�t
−E∇2un+1+2ẑ×un+1+∇ pn+1= fn+1−un+1 ·∇un+1 (16)

∇ ·un+1=gn+1 (17)
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To compute u1 and p1 initially, an implicit first-order backward differentiation formula (BDF-1),
i.e. a backward Euler scheme, with a first-order extrapolation is used. This procedure is described by

u1−u0

�t
−E∇2u1+2ẑ×u1+∇ p1= f1−u0 ·∇u0 (18)

∇ ·u1=g1 (19)

Although a fixed time-step approach is adopted in the current model, a variable time-step scheme
can be readily implemented.

3.2. Spatial discretization

3.2.1. Spheroidal tetrahedral mesh. The essential strategy for generating a tetrahedral mesh suit-
able for spheroidal geometry is first to construct a spherical tetrahedral mesh [23] that is then
deformed into a spheroidal tetrahedral mesh by introducing eccentricity � as a geometric parameter
of the spheroidal mesh. More precisely, all nodes (xi , yi , zi ) for a spherical tetrahedral mesh within
the unit sphere satisfying

x2i + y2i +z2i =r2i , 0<ri�1

can be transformed by

x �
i = xi , y�

i = yi , z�i = zi
√
1−�2

such that the deformed nodes (x �
i , y

�
i , z

�
i ) satisfy

(x �
i )

2+(y�
i )

2+ (z�i )
2

1−�2
=r2i , 0<ri�1

If required, we can place more nodes near the bounding surface of a spheroidal cavity by stretching
the spherical mesh points (xi , yi , zi ) radially before the deformation, for example,⎡

⎢⎢⎣
xi

yi

zi

⎤
⎥⎥⎦= 1

ri
sin
(�

2
ri
)2/3

⎡
⎢⎢⎣
xi

yi

zi

⎤
⎥⎥⎦

The spherical mesh begins with approximating the sphere by an icosahedron that is then further
divided into 20 identical tetrahedra based on it’s 20 triangular facets and the center of the sphere as
shown in Figure 2(a). This initial tetrahedral mesh is then refined recursively by subdividing each
of the tetrahedra into eight subtetrahedra according to the method of Liu and Joe [24]. A typical
decomposition is illustrated in Figure 3. The third refinement with 10 240 tetrahedra is displayed
in Figure 2(b).

In this way, the three-dimensional tetrahedralization of the spheroid produces a nearly uniform
mesh distribution on the spheroidal surface without the pole problem and a small number of nodes
with a nearly uniform mesh distribution in the neighborhood of the center r=0 without the origin
problem. A spheroid (�=0.95) filled with 10 240 tetrahedra is illustrated in Figure 4. When � is
very close to 1, representing a highly flatted spheroidal disk, an alternative meshing algorithm
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(a)

(b)

Figure 2. The unit sphere meshes: (a) the initial mesh showing 12 nodes on a spherical surface with
20 tetrahedra within the sphere and (b) the third refinement showing 2562 nodes on a spherical

surface with 10240=20×83 tetrahedra within the sphere.

should be used. This is because a regular-shaped tetrahedron after transformation may become too
stretched and, consequently, lead to a poor finite element approximation. In this case, a general
mesh generation algorithm based on the Delaunay triangulation can be employed instead, for
example, see Persson and Strang [25].

3.2.2. Finite element approximation. The Galerkin-weighted residual approach is adopted in the
finite element formulation of the governing equations. Let V denote the spheroidal volume. Multi-
plying the time discretized equations (16) and (17) by the corresponding weight functions wu and
wp, respectively, and then integrating the resulting equations over the region V with appropriate
integration by parts, we derive the weak formulation of the governing equations (9) and (12)
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(a) (b)

Figure 3. Subdivision of a tetrahedron into eight subtetrahedra: (a) an original tetrahedron
and (b) a typical decomposition into eight subtetrahedra where four of them are at the
corners of the original tetrahedron and the other four come from further subdivision of the

central octahedron into four subtetrahedra by adding an interior edge.

Figure 4. A spheroidal mesh �=0.95 with 10 240 tetrahedra showing more nodes being placed in the
vicinity of the bounding surface of the spheroid. The region x>0, y>0 and z>0 is cut off.

at time tn+1: ∫
V

(
3un+1−4un+un−1

2�t

)
·wu dV +

∫
V
E∇un+1 ·∇wu dV

+
∫
V
2ẑ×un+1 ·wu dV +

∫
V

∇ pn+1 ·wu dV

=
∫
V
(fn+1−un+1 ·∇un+1) ·wu dV (20)

∫
V
(∇ ·un+1)wp dV =

∫
V
gn+1wp dV (21)

where the surface integral in Equation (20) vanishes because the weight function wu is zero on
the bounding surface � of a spheroid.
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Figure 5. A tetrahedral element: nodes 1 to 4 for the pressure p, nodes 1 to 10 for the velocity u.

The weak formulation (20) and (21) is of the saddle-point form. Mixed finite element of the
Hood–Taylor type [26] is used for their spatial discretization. This choice verifies the discrete
inf–sup condition, which ensures the existence and uniqueness of the discrete saddle-point problem.
The pressure pn+1 is uniquely determined up to an additive constant. An additional condition
pn+1(r0)= constant is imposed at a selected point r0 numerically. Hood–Taylor elements use
the piecewise quadratic polynomials to approximate the velocity u, but use the piecewise linear
polynomials to approximate the pressure p. In consequence, there are four nodes for p and
ten nodes for u in each tetrahedron as shown in Figure 5. On a typical kth tetrahedral element, we
seek approximations for the velocity u and pressure p by

u(k) =
10∑
j=1

u(k)
j N (k)

j , p(k) =
4∑
j=1

p(k)
j M (k)

j (22)

where u(k)
j and p(k)

j are the values of u and p at the node j . The linear and quadratic shape

functions for the kth tetrahedron, M (k)
j and N (k)

j , are defined as

M (k)
1 = L(k)

1 , M (k)
2 = L(k)

2 , M (k)
3 = L(k)

3 , M (k)
4 = L(k)

4

N (k)
1 = L(k)

1 (2L(k)
1 −1), N (k)

2 = L(k)
2 (2L(k)

2 −1), N (k)
3 = L(k)

3 (2L(k)
3 −1)

N (k)
4 = L(k)

4 (2L(k)
4 −1), N (k)

5 =4L(k)
1 L(k)

2 , N (k)
6 =4L(k)

1 L(k)
3

N (k)
7 =4L(k)

1 L(k)
4 , N (k)

8 =4L(k)
2 L(k)

3 , N (k)
9 =4L(k)

2 L(k)
4 , N (k)

10 =4L(k)
3 L(k)

4

(23)

where (L(k)
j , j =1, . . . ,4) are the volume coordinates for the kth tetrahedron. M (k)

j and N (k)
j have

the following properties:

M (k)
j (xi )=�i j , N (k)

j (xi )=�i j (24)

4∑
j=1

M (k)
j (x)=1,

10∑
j=1

N (k)
j (x)=1 (25)

In the Galerkin finite element model, the weight functions are selected to be the same as the corre-
sponding shape functions. Applying the finite element scheme (20) and (21) to each tetrahedron
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and using a standard procedure of the finite element method [27], we obtain a system of linear
equations for the coefficients u j and p j on the whole mesh at tn+1. Readers can refer to [28, 29]
for detailed discussion about mixed finite element formulation for Navier–Stokes equations.

3.3. Stabilized finite element scheme

In order to circumvent the numerical instabilities of the Galerkin finite element method, we adopt
the stabilization scheme proposed by Codina [30]. This scheme is capable of dealing with all
the instabilities that a standard Galerkin method may present, namely the pressure instability, the
instability arising from convection-dominated situation and the less popular instabilities found
when the Navier–Stokes equations are dominated by the Coriolis force. For actual numerical
computation in spheroidal geometry, we use a stabilized scheme that consists of finding un+1 and
pn+1 such that∫

V

(
3un+1

2�t
+2ẑ×un+1+∇ pn+1

)
·wu dV +

∫
V
E∇un+1 ·∇wu dV

+
Nel∑
k=1

∫
V k

	u(2ẑ×wu−E∇2wu) ·
(
3un+1

2�t
+2ẑ×un+1+∇ pn+1−E∇2un+1

)
dV

+
Nel∑
k=1

∫
V k

	p(∇ ·wu)(∇ ·un+1) dV

=
∫
V

(
4un−un−1

2�t
+fn+1−un+1 ·∇un+1

)
·wu dV

+
Nel∑
k=1

∫
V k

	u(2ẑ×wu−E∇2wu) ·
(
4un−un−1

2�t
+fn+1−un+1 ·∇un+1

)
dV

+
Nel∑
k=1

∫
V k

	p(∇ ·wu)g
n+1 dV (26)

∫
V
(∇ ·un+1)wp dV +

Nel∑
k=1

∫
V k

	u∇wp ·
(
3un+1

2�t
+2ẑ×un+1+∇ pn+1−E∇2un+1

)
dV

=
∫
V
gn+1wp dV +

Nel∑
k=1

∫
V k

	u∇wp ·
(
4un−un−1

2�t
+fn+1−un+1 ·∇un+1

)
dV (27)

for all weight functions wu and wp, where the parameters 	u and 	p are computed within each
element as

	u=
⎡
⎣4E

h2
+ 2|un+1|

h
+|�|

⎤
⎦

−1

	p =4E+2|un+1|h+|�|h2

where h is the element size and un+1=2un−un−1.
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3.4. Scalable EBE parallelization

We shall consider an implicit finite element scheme for time-dependent fluid dynamic problems in
rotating spheroidal geometry. Let Ax=b be the linear system resulted from the temporal and spatial
discretization at each time step where A is the global coefficient matrix containing the physical
parameters of a fluid dynamic model, x a column vector containing the unknown coefficients u j
and p j as described in Section 3.2.2, b a column vector. When the linear system Ax=b is solved
by a Krylov subspace method, the EBE technique [31–33] can naturally parallelize a finite element
computational code on a distributed memory, massively parallel computer by utilizing the fact
that the coefficient matrix A is the sum of the element matrices Ae. The following discussion on
the EBE technique used in our computations is intended to rely only on abstract features of the
hardware and software environment and should be applicable, in principle, to a variety of distributed
memory, massively parallel systems. Our actual Fortran 90 implementation solves the linear system
Ax=b resulting from the finite element approximation (26) and (26) to the governing equations
(9) and (12) by the BiCGstab(L) iterative solver [34, 35], with message passing interface (MPI) as
the communication tool. It not only achieves nearly ideal linear scalability on massively parallel
computers but also is portable and does not require any support from other external numerical
software packages.

We use two different distributed data structures to store the matrix A and vectors x and b. The
central feature of the EBE parallelization strategy is that, in contrast to the classical finite element
method (e.g. Zienkiewicz [27]), it avoids the typical assembly process and retains the global matrix
A in the unassembled form. In other words, all element matrices Ae are stored and distributed
evenly across different processors. Suppose the whole mesh consists of Nel elements (which are
tetrahedrons in our case). The corresponding Nel element matrices Ae are distributed among NP
processors such that

Nel=
NP∑
pe=1

Nelpe (28)

where Nelpe is the number of element matrices stored on processor pe. Note that the Nelpe’s differ
at most by one. This element–structure makes the formation of the element matrices embarrassingly
parallel because the computations of Ae are independent of each other. The vector x (the same
for b) is distributed in an equation–structure such that

Neq=
NP∑
pe=1

Neqpe (29)

where Neq is the length of x and Neqpe is the length of xpe, which is the segment of x stored
on processor pe. Similarly, the Neqpe’s differ also at most by one. By working on the element-
and equation–structures, the EBE parallelization of the main algebraic operations, namely vector
addition, inner product and matrix–vector multiplication, in an iterative procedure, is described in
detail below.

The vector addition and inner product involve two vectors, say x and y, in the same equation–
structure. The vector addition is naturally parallelized as

x+ y⇐⇒ xpe+ ype on all processors pe=1,2, . . . ,NP (30)
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All additions, xpe+ ype, in (30) are componentwise operations on locally available data and thus
no inter-processor communication is required. The inner product is a collective operation and thus
requires inter-processor communication. The parallelization of an inner product d= x · y involves
two steps:

(i) Evaluate local inner products dpe= xpe · ype on each processor pe;
(ii) Reduce (through communications) d from dpe’s on all processors.

The parallelization of the most time-consuming matrix–vector product, say v= Ax , begins with
computing the product in an EBE manner as

Ax=
(

Nel∑
k=1

Ae
k

)
x=

Nel∑
k=1

Ae
kx

e
k =

Nel∑
k=1

vek =v (31)

where xek and vek represent the appropriate part of x and v associated with kth element and they
are stored in a data structure conforming with element–structure. We parallelize the elementwise
matrix–vector products in Equation (31) as

Nel∑
k=1

Ae
kx

e
k =

NP∑
pe=1

Nelpe∑
k=1

Ae
kx

e
k =

NP∑
pe=1

Nelpe∑
k=1

vek (32)

The parallel EBE matrix–vector multiplication can be summarized as

(i) Construct xek from x (i.e. xpe’s) for k=1,2, . . . ,Nelpe on each processor pe;
(ii) Compute vek = Ae

kx
e
k for k=1,2, . . . ,Nelpe on each processor pe;

(iii) Collect vek ’s on all processors to form v (i.e. vpe’s are updated).

Note that the second step involves data only in element–structure and thus it is communication
free, while the first and last steps require inter-processor communications because they exchange
data between element– and equation–structures. The first step gathers information from equation–
structure data x to construct element–structure data xek ’s and the last step scatters element–structure
data vek ’s into equation–structure data v.

4. NUMERICAL RESULTS

4.1. Validation via the exact solution

For the verification of the accuracy and convergence of our finite element scheme (26) and (26),
we consider the following test problem in a rotating fluid spheroid. A special external force f(x, t),
the Dirichlet boundary data w and the initial condition u0 are chosen such that an exact nonlinear
solution, ue and pe, of the spheroidal system is given by

ue=S(r,�,�)cos2�t

⎛
⎜⎜⎝
2r2(4+5cos2�)sin2�sin2 �

2r2 sin2�sin4�

8r2 cos2�cos2 �sin�

⎞
⎟⎟⎠ , ∇ ·ue 	=0 (33)

pe=S(r,�,�)cos2�t (34)
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Table I. Tetrahedral meshes employed in convergence tests (h0=0.85).

Mesh size h Unknowns Tetrahedra Nodes

h0 495 160 309
≈h0/2 4553 1280 2057
≈h0/4 39349 10240 14993
≈h0/8 327661 81920 114465
≈h0/16 2675165 655360 894529

where (r,�,�) are spherical polar coordinates with �=0 representing the axis of rotation and S,
in connection with the spheroidal domain, is defined as

S(r,�,�)=(r sin� cos�)2+(r sin�sin�)2+ (r cos�)2

1−�2
−1

such that both ue and pe vanish on the bounding surface � of the spheroid.
The test problem is solved to study the spacial and temporal convergence of our numerical

method by using the constructed exact nonlinear solution for rotating spheroidal systems. The
following error norms (in both space and time) are used for the investigation of the convergence:

‖uh−u‖=
√

1

2V

∫ tmax

0

∫
V

|uh−u|2 dV dt (35)

‖ph− p‖=
√

1

2V

∫ tmax

0

∫
V

|ph− p|2 dV dt (36)

where V denotes the volume of the spheroid. The discrete version of these norms, namely, ‖uh−u‖h
and ‖ph− p‖h , are obtained by approximating the integrations in space and time by the 4-point
Gaussian quadrature and the trapezoidal rule, respectively. The tetrahedral mesh statistics employed
in the convergence tests are listed in Table I.

We recall that, see, for example, [36], for all sufficiently smooth u and p at the time step tn+1,
there exist functions uh and ph , such that

‖uh−u‖n+1=
√

1

2V

∫
V

|uh(r, tn+1)−u(r, tn+1)|2 dV =O(h2) (37)

‖ph− p‖n+1=
√

1

2V

∫
V

|ph(r, tn+1)− p(r, tn+1)|2 dV =O(h) (38)

Together with the second-order backward differentiation temporal discretization, we would expect

‖uh−u‖h =O(h2+�t2)

‖ph− p‖h =O(h+�t2)

numerically in our convergence tests.
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Table II. Convergence results for �=0.35 spheroid with E=10−5, h0=0.85 and �t0=0.01.

h �t ‖uh−u‖h Ratios ‖ph− p‖h Ratios

h0 �t0 6.332014E−3 — 1.940355E−2 —
≈h0/2 �t0/2 5.753727E−4 0.0909 1.702217E−2 0.8773
≈h0/4 �t0/4 4.455472E−5 0.0774 6.132294E−3 0.3603
≈h0/8 �t0/8 1.784173E−6 0.0400 1.909108E−3 0.3113
≈h0/16 �t0/16 2.563450E−7 0.1437 8.697255E−4 0.4556

Table III. Convergence results for �=0.70 spheroid with E=10−5, h0=0.85 and �t0=0.01.

h �t ‖uh−u‖h Ratios ‖ph− p‖h Ratios

h0 �t0 2.942919E−3 — 4.030963E−3 —
≈h0/2 �t0/2 2.603705E−4 0.0885 4.460741E−3 1.1066
≈h0/4 �t0/4 1.998087E−5 0.0767 1.770346E−3 0.3969
≈h0/8 �t0/8 7.621229E−7 0.0381 6.067633E−4 0.3427
≈h0/16 �t0/16 1.185576E−7 0.1556 3.097867E−4 0.5106

We perform two convergence tests with different geometrical parameters �=0.35 and 0.70, all
using a fixed Ekman number E=10−5. In each test, the error norms versus element size h and
time step �t are tabulated. Tables II and III demonstrate the accuracy and the convergence of
the two tests for two different spheroids for �=0.35 and 0.70, respectively, which are consistent
with that of the theoretical prediction. An excellent agreement between the numerical nonlinear
solutions and the constructed exact solution is achieved, validating our nonlinear spheroidal code
in a comprehensive way.

4.2. Validation via specially forced resonance

The primary aim is at providing a further validation by solving the governing equations (9) and
(10) numerically subject to both a resonant forcing and the incompressible condition, together with
the experimental boundary condition u� =0 on the bounding surface of a spheroid.

Before presenting the detailed numerical result, it is helpful to briefly discuss spheroidal polar
coordinates (
,�,	) with the corresponding velocity vector u=(u
,u�,u	), which will be needed
in describing the forcing f(
,�,	, t) for an oblate spheroid. For spheroidal geometry with eccen-
tricity �, the relationship between rectangular Cartesian coordinates (x, y, z) and spheroidal polar
coordinates (
,�,	) [37] is given by

x2=(�2+
2)(1−	2)cos2� (39)

y2=(�2+
2)(1−	2)sin2� (40)

z2=
2	2 (41)

On the framework of spheroidal polar coordinates (
,�,	), the bounding surface of a spheroidal
cavity � is then described by 
=√

1−�2. Furthermore, the linearized equations (9) and (10) in
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spheroidal polar coordinates in the limits E→0 and f→0, which describe non-dissipative inertial
waves in a rotating spheroidal cavity, are

w
�u


�t
−2
vu�+u

�p
�


=0 (42)

w
�u	

�t
+2	uu�+v

�p
�	

=0 (43)

w
�u�

�t
+2(
vu
−	uu	)+ w

uv

�p
��

=0 (44)

uv

[
�
�


(wuu
)+ �
�	

(wvu	)

]
+w2 �u�

��
=0 (45)

for which the boundary condition becomes

u
 =0 at 
=
√
1−�2 (46)

where

u=
√


2+�2, v=
√
1−	2, w=

√

2+�2	2 (47)

Evidently, Equations (42)–(45) allow us to write solutions (u, p) in the form

(u, p)=[u(
,	), p(
,	)] exp[i(m�+2�t)] (48)

The elimination of the velocity u from Equations (42)– (45) leads to the Poincaré equation for the
pressure p, which can be written in spheroidal polar coordinates (
,�,	),

C		
�2 p
�	2

+C


�2 p
�
2

+C	
�p
�	

+C

�p
�


+C	

�2 p
�	�


+C0 p=0 (49)

where

C		 = v2

w4

(
	2u2+ �2−1

�2

2v2

)

C

 = u2

w4

(

2v2+ �2−1

�2
	2u2

)

C	 = 	

w6
[−2w4+u2v2(3
2−	2�2)]

+�2−1

�2

(
v2

	w6

)
[w4−
2w2(1+	2)−2
2	2(u2+�2v2)]

C
 = 


w6
[2w4+u2v2(3	2�2−
2)]

+�2−1

�2

(
u2


w6

)
[w4−	2w2(�2−
2)−2
2	2(u2+�2v2)]
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C	
 = −2	
u2v2

�2w4

C0 = − m2

u2v2

The simplest non-axisymmetric solution p to the Poincaré equation (49) describing equatorially
antisymmetric inertial waves is given by

p=umvm
	ei(m�+2�t) (50)

where m denotes the azimuthal wavenumber of an inertial wave. With the availability of the explicit
expression (50) for p, we can derive the velocity components by substituting (50) into Equations
(42)–(47) and then solving for u, which yields

u
 =−i
	(uv)m

2w

[ −
2m

u(1−�)
+ u

�

]
ei(m�+2�t) (51)

u� = m
	

2(1−�)
(uv)(m−1)ei(m�+2�t) (52)

u	 =−i

(uv)m

2w

[
	2m

v(1−�)
+ v

�

]
ei(m�+2�t) (53)

To determine the half-frequency � of the inertial waves, we use the boundary condition (46) on
the envelope of the spheroidal cavity 
=√

1−�2, giving rise to the following simple dispersion
relation:

�= 1

1+m(1−�2)
(54)

On substitution of (54) into (51)– (53) we obtain the three velocity components in closed form:

u
(m,�, t)=−i
[1+m(1−�2)]

2

	(uv)m

w

[ −
2

u(1−�2)
+u

]
ei(m�+2�t) (55)

u�(m,�, t)= [1+m(1−�2)]
2


	(uv)(m−1) 1

(1−�2)
ei(m�+2�t) (56)

u	(m,�, t)=−i
[1+m(1−�2)]

2


(uv)m

w

[
	2

v(1−�2)
+v

]
ei(m�+2�t) (57)

The simplest solution is obtained by setting m=1 in (55)–(57), which is characterized by the
vanishing of the radial flow in the spherical limit

u
(m=1,�→0, t)→0 (58)

i.e. the fluid motion is purely toroidal in spherical geometry [12].
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For a further validation of our spheroidal code, we choose the following parameterized, time-
dependent forcing:

f(x,�∗, t)=[u
,u�,u	](m=1,�=�∗, t)+c.c. (59)

for the governing equations (9)–(10), where c.c. denotes the complex conjugate of the preceding
term and (u
,u�,u	) are defined by Equations (55)–(57). By fixing the value of �∗ in the forcing
f(x,�∗, t) while solving (9)–(10) for different spheroidal cavities marked by different values of
eccentricity �, we predict a resonant phenomenon in the following manner. When the eccentricity �
of a spheroidal container satisfies |�−�∗|/�∗ 1 with E�1, numerical solutions to the nonlinear
equations (9)–(10) are characterized by small amplitudes; when � satisfies |�−�∗|/�∗ �1 with
E�1, however, the resonance takes place and, consequently, the amplitude of the forced numerical
solutions reaches its maximum. For measuring the amplitude of the velocity u(r, t), we introduce
the kinetic energy of the time-dependent flow, Ekin(t), defined as

Ekin(t)= 1

2V

∫
V

|u(r, t)|2 dV (60)

and the mean kinetic energy Ēkin defined as

Ēkin= 1

4�V

∫ 2�

0

[∫
V

|u(r, t)|2 dV
]
dt (61)

where V denotes the volume of the spheroidal container.
We have performed an extensive computation over a wide range of spheroids with different

eccentricities at two given values of �∗. In the first case, f is fixed by letting m=1 and �∗ =0.35
in (59) while we calculate nonlinear numerical solutions to the governing equations (9)–(10) at
E=10−4 in different spheroids by changing its eccentricity from the spherical limit �=0 to a flatted
spheroid with �=0.7. Figure 6 shows the mean kinetic energies Ēkin as function of eccentricity �
at a fixed �∗ =0.35. The kinetic energies Ekin(t) as a function of time are presented in Figure 7
for three typical values of �. Note that, if the nonlinear term in (9) is neglected at the limit E→0,
it is theoretically predicted that Ēkin→∞ when the eccentricity of a spheroid �→0.35. This, of
course, cannot occur in our numerical computations because the Ekman number E is finite and
the nonlinear effect is fully included. The effects of the viscosity and nonlinearity not only limit
the amplitude of the forced flow but also shift the resonant eccentricity from �=0.35 in the limit
E→0 to �=0.37 at E=10−4, as clearly indicated in Figure 6. In the second case, we take the
external forcing f by letting m=1 and �∗ =0.7 in (59), expecting that a rotating spheroid with its
eccentricity � satisfying |�−0.7|/0.7�1 would yield the largest amplitude. We have calculated
many numerical solutions to the Equations (9)–(10) with a fixed �∗ =0.7 at E=10−4 for different
spheroids ranging from �=0.5 to a highly flatted spheroid with �=0.8. The result of our numerical
computation is also displayed in Figure 6, showing the mean kinetic energies Ekin as function of
� at a fixed �∗ =0.7. As a consequence of the viscosity and nonlinearity, the resonant eccentricity
is shifted from the theoretical value �=0.70 in the limit E→0 to �=0.72 at E=10−4, which can
be clearly seen in Figure 6.

This satisfactory agreement between the theoretical prediction and the numerical simulations,
which are performed over a wide range of different oblate spheroids, not only indicates the validity
of our nonlinear spheroidal code but also suggests the flexibility of the nonlinear code being
capable of handling highly flatted rotating spheroids.
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Figure 6. Mean kinetic energies Ēkin are shown as function of eccentricity � for two
fixed �∗ =0.35 and �∗ =0.70.
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Figure 7. Kinetic energies Ekin(t) for three different eccentricities � are shown as a
function of time at a fixed �∗ =0.35.

5. SUMMARY AND REMARKS

As a consequence of rapid rotation, many planetary and astrophysical bodies are in the shape of an
ablate spheroid. An efficient numerical method for computing nonlinear flows confined in an ablate
spheroidal cavity has many applications to the problems of geophysical and astrophysical fluid
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dynamics. This paper presents an efficient EBE finite element method that can be used to compute
nonlinear flows confined in a rotating ablate spheroidal cavity with arbitrary eccentricity 0��<1.
We have placed the emphasis of our study on three different aspects of the numerical problem:
the temporal and spatial tetrahedral discretization in a spheroidal cavity, the EBE parallelization
scheme and the validation of the nonlinear spheroidal code. To authors’ best knowledge, this
paper represents the first study of applying the EBE finite element method to the problem of fluid
dynamics in rotating spheroids with a wide range of geometric eccentricities.

A major difficulty in the numerical studies of rotating spheroidal fluids is how to comprehensively
validate a complicated, lengthy nonlinear spheroidal code. We have chosen two different ways
for the purpose of validation: by using the constructed exact solution and by invoking a special
forcing that can theoretically cause the strong resonance in a rotating fluid spheroid marked by
a particular value of eccentricity. A satisfactory agreement is achieved between the constructed
exact solution and the corresponding nonlinear numerical solution with an expected convergence
property, representing a comprehensive validation of the nonlinear spheroidal code. Moreover, a
satisfactory agreement between the theoretical prediction and the nonlinear numerical solution
over a wide range of oblate spheroids promises an application of the nonlinear code to various
geophysical and astrophysical problems.

In summary, the parallel nature of the nonlinear spheroidal code, together with its high flexibility
and its successful validation, opens an exciting new line of the numerical studies for precessionally
driven flows or tidally driven flows in planets and stars in the era of modern massively parallel
computers.
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